KU LEUVEN

Churn Prediction using Dynamic RFM-Augmented node2vec

Sandra Mitrović, Jochen de Weerdt, Bart Baesens & Wilfried Lemahieu

Department of Decision Sciences and Information Management, KU Leuven

18 September 2017, DyNo Workshop, ECML 2017 Skopje, Macedonia

Outline

- Introduction
- Motivation
- Methodology
- Experimental evaluation
- Results
- Conclusion
- Future work

Introduction

Churn prediction (CP)

- Predict which customers are going to leave company's services
 - Still considered as topmost challenge for Telcos (FCC report, 2009)
 - Due to acquisition/retention cost imbalance
- Different types of data used for CP
 - Subscription, socio-demographic, customer complaints etc.
 - More recently: Call Detail Records (CDRs)
- CDRs -> call graphs

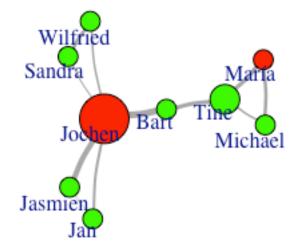
Date	Call Duration(sec)	Caller Number	Callee Number
2008-09-02 20:44:19	34	24002937	24997766
2008-09-02 20:42:56	26	24002937	24997766
2008-09-02 20:39:05	29	24002937	24997766
2008-09-02 20:38:06	24	24002937	24997766

KU LEU

Call graph featurization

Extracting informative features from (call) graphs

- An intricate process, due to:
 - Complex structure / different types of information
 - Topology-based (structural)
 - Interaction-based (as part of customer behavior)
 - Edge weights quantifying customer behavior
 - Dynamic aspect
 - Call graph are time-evolving
 - Both nodes and edges volatile
 - Churn = lack of activity



KU LEU

Motivation

Problems identified (w.r.t. current literature)

- Not many studies account for **dynamic aspects of call networks**
 - Especially not jointly with interaction and structural features
 - Structural features are under-exploited
 - Due to high computational time in large graphs (e.g. betweenness centrality)
 - And without using ad-hoc handcrafted features
 - No featurization methodology
 - Dataset dependent

Our goal

- Performing holistic featurization of call graphs
 - Incorporating both interaction and structural information
 - Avoiding/reducing feature handcrafting
 - While also capturing the dynamic aspect of the network

KULEUV

Methodology

How do we address these goals?

G1: Incorporating both interaction and structural information

Devise different operationalizations of RFM features and novel RFMaugmented call graph architectures

KU LEUV

G2: Avoiding/reducing feature handcrafting

Opt for representation learning

G3: Capturing the dynamic aspect of the network

Slice original network into weekly snapshots

Integrating interaction and structural information

Interactions (current literature)

- Usually delineated with RFM (Recency, Frequency, Monetary) variables
 - Benefits:
 - Simple
 - Yet still with good predictive power
 - Many different operationalizations
 - Different dimensions
 - Different granularities

Interactions (this work)

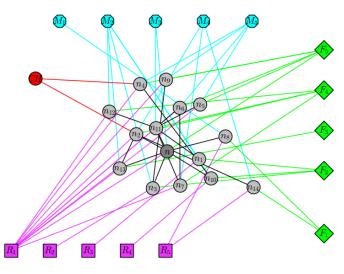
- Summary RFM (*RFM_s*)
- Detailed RFM (RFM_d)
 - Direction & destination sliced:
 - $X_{out_h}, X_{out_o}, X_{in}, X \in \{R, F, M\}$

KU LEUVEN

- Churn RFM (RFM_{ch})
 - Only w.r.t. churners

RFM-Augmented networks

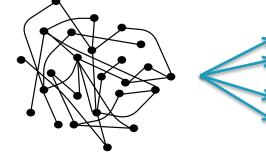
- Original topology extended
 - By introducing artificial nodes based on RFM
 - Structural information partially preserved
- Each of R, F, M partitioned into 5 quantiles
 - One artificial node assigned to each quantile
 - Interaction info embedded through extended topology



RFM features

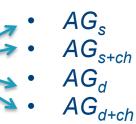
- RFM_s
- RFM_s || RFM_{ch}
- RFM_d
- $RFM_d \parallel RFM_{ch}$

Network topology



8

4 augmented networks



Representation learning

Node2vec

• Idea: Bring the representations of the words from the same context C close (borrowed from SkipGram)

9

- Learn f, f: V -> R^d, d<< |V| s.t. max $\Sigma_{v \text{ in } V} \log Pr(C_v | f(v))$
- Definition of context in graph setting?
 - Neighborhoods/Random walks
 - Of which order? How to perform a walk?
- Flexible walks using additional parameters
 - Return parameter p
 - In-out parameter q
 - Coming from i, probability to transition

from j to k is: w_{jk} , if $d_{ik} = 1$ w_{jk}/p , if $d_{ik} = 0$ w_{jk}/q , if $d_{ik} = 2$

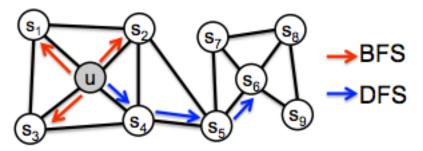


Figure source: Grover & Leskovec, 2016

Node2vec -> scalable node2vec

Node2vec

- Accounts both for previous and current node
- Additional parameters (p,q)
- To make walks efficient, requires precomputation of probability transitions:
 - On node level (1st time)
 - On edge level (successive)
 - Alias sampling used for efficient sampling
 - reduces O(n) to O(1)

However, does not scale well on large graphs! (our case ~ 40M edges)

Scalable node2vec

- Accounts only for current node
- No additional parameters
- Requires precomputation of probability transitions only on node level
 - Alias sampling retained

Therefore, scales well even on large graphs!

KU LEUV

Dynamic graphs

Different definitions (current literature)

- G = (V, E, T)
- G = (V, E, T, ΔT)
- $G = (V, E, T, \sigma, \Delta T)$

Standard approach

Consider several static snapshots of a dynamic graph

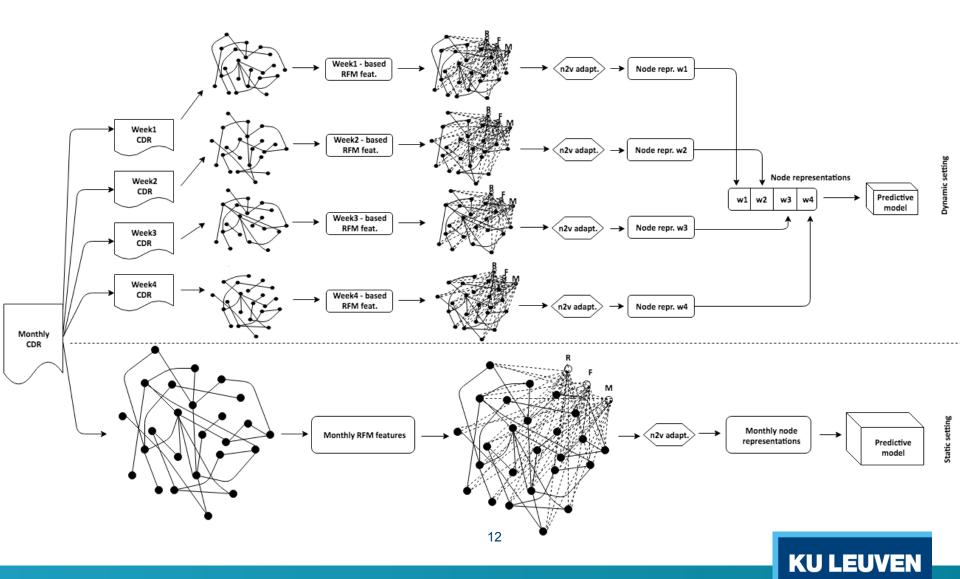
Our setting

Monthly call graph G = (V, E) ->

Four temporal graphs $G_i = (V_i, E_i, w_i)$, i =1,...,4

KU LEUVEN

Methodology – Graphical overview

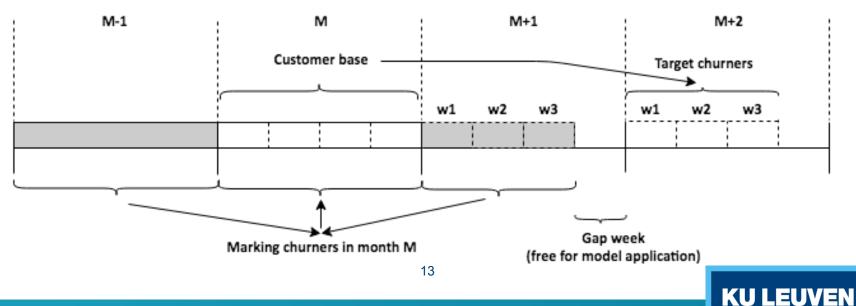


Experimental Evaluation (1/2)

- One prepaid, one postpaid dataset
 - 4 months data (only CDRs)
- Undirected networks
- Model
 - \circ Logistic regression with L₂ regul. (10-fold CV for tuning hyperparam.)

- Evaluation
 - AUC, lift (0.5%)

Parameter	Scalable node2vec
# walks	10
walk length	30
context size	10
# dimen.	128
# iterations	5



Experimental Evaluation (2/2)

Research questions

- RQ1: Do features taking into account dynamic aspects perform better than static ones?
- RQ2: Do RFM-augmented network constructions improve predictive performance?
- RQ3: Does the granularity of interaction information (summary, summary +churn, detailed, detailed+churn) influence the predictive performance?

Experiments

- \circ RFM_s stat. vs. RFM_s dyn. vs. AG_s stat. vs. AG_s dyn. -> summary
- \circ RFM_{s+ch} stat. vs. RFM_{s+ch} dyn. vs. AG_{s+ch} stat. vs. AG_{s+ch} dyn. -> summary+churn
- \circ RFM_d stat. vs. RFM_d dyn. vs. AG_d stat. vs. AG_d dyn. -> detailed
- RFM_{d+ch} stat. vs. RFM_{d+ch} dyn. vs. AG_{d+ch} stat. vs. Ag_{d+ch} dyn. -> detailed+churn

KUL

Experimental results (1/2)

Prepaid

RFM	Static		Dynamic		Augmented network	Static		Dynamic	
	AUC Li			\mathbf{Lift}	Augmented network	AUC	Lift	AUC	Lift
RFM_s	0.671 1.7	788	0.680	2.025	AG_s	0.680	2.061	0.694	2.013
$\left RFM_{s+ch} \right $	0.671 1.7	789	0.689	2.014	AG_{s+ch}	0.680	1.976	<u>0.705</u>	2.331
RFM_d	0.683 1.8	857	0.692	2.063	AG_d	0.678	1.898	0.693	2.019
$\left RFM_{d+ch} \right $	0.682 1.8	856	0.695	2.040	AG_{d+ch}	0.680	1.967	0.702	2.316

- RQ1 Answer: Dynamic better than static!
- RQ2 Answer: RFM-augmented networks improve predictive performance
- RQ3 Answer: Best performing interaction granularity is: summary+churn
 - Second best: detailed+churn

KU L

Experimental results (2/2)

Postpaid

RFM	Static		Dynamic		Augmented network	Static		Dynamic	
	AUC	Lift	AUC	Lift	Augmented network	AUC	Lift	AUC	Lift
RFM_s	0.741	3.367	0.743	3.403	AG_s	0.759	3.602	0.768	3.919
$\left RFM_{s+ch} \right $	0.741	3.369	0.758	3.858	AG_{s+ch}	0.760	3.553	0.769	3.928
RFM_d						0.754	3.716	0.764	3.908
RFM_{d+ch}	0.750	3.751	0.767	3.885	AG_{d+ch}	0.755	3.720	0.764	3.901

- RQ1 Answer: Dynamic better than static!
- RQ2 Answer: RFM-augmented networks improve predictive performance
- RQ3 Answer: Best performing interaction granularity is summary+churn
 - Second best: summary

KU LEUVEN

Conclusion

- We design **RFM-augmentations** of original graphs
 - Enable conjoining interaction and structural information
- We devise a **scalable** adaption of the original node2vec approach
 - Relaxing random walk generation and avoiding grid search tuning for two additional parameters
- Conducted experiments showcase the performance benefits which stem from taking into account the dynamic aspect
 - Also from exploiting RFM-augmented networks and learning node representations from these
- Novelty:
 - First work both in using (dynamic) node representations in CDR graphs for churn prediction and
 - First work in applying the RFM framework together with unsupervised and dynamic learning of node representations

KU LEU

Future research

- Attempt capturing call dynamics in a more sophisticated manner (e.g. the ordering of calls, their inter-event time distribution)
- Investigate the effect of different time granularities
- Explore whether prioritizing more recent dynamic networks improves performance

Thank you!

Questions?

Email: sandra.mitrovic@kuleuven.be

